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ABSTRACT
We study the problem of organizing a collection of objects—images,
videos—into clusters, using crowdsourcing. This problem is no-
toriously hard for computers to do automatically, and even with
crowd workers, is challenging to orchestrate: (a) workers may clus-
ter based on different latent hierarchies or perspectives; (b) work-
ers may cluster at different granularities even when clustering using
the same perspective; and (c) workers may only see a small portion
of the objects when deciding how to cluster them (and therefore
have limited understanding of the “big picture”). We develop cost-
efficient, accurate algorithms for identifying the consensus organi-
zation (i.e., the organizing perspective most workers prefer to em-
ploy), and incorporate these algorithms into a cost-effective work-
flow for organizing a collection of objects, termed ORCHESTRA.
We compare our algorithms with other algorithms for clustering,
on a variety of real-world datasets, and demonstrate that ORCHES-
TRA organizes items better and at significantly lower costs.

1. INTRODUCTION
“Everything we hear is an opinion, not a fact.
Everything we see is a perspective, not the truth.”
— Marcus Aurelius, ca. 150 AD.

With the costs of storage rapidly decreasing, we have been amass-
ing large volumes of images and videos within our personal com-
puters and within shared file systems in organizations. To be able
to make effective use of these images and videos, it is essential
to organize them into clusters. Unfortunately, automated schemes
perform poorly at organization since they are not able to interpret or
understand content adequately. Human beings, on the other hand,
can easily organize such content, but it is often impossible for any
single human worker to organize a large corpus. So we turn to
crowdsourcing for organizing content.

Unfortunately, employing crowdsourcing is rife with several is-
sues, stemming from the fact that there are often many correct ways
of organizing complex content such as images. To illustrate these
issues (listed below), we asked 20 workers on Amazon’s Mechan-
ical Turk to cluster a stylized set of 25 images, where each image
is a random combination of (SHAPE, COLOR, SIZE). Workers were
allowed to create as many clusters as they wanted, and populate
these clusters with the 25 images. We note that this is a simple
experiment—we expect real world corpora to be more complex.
• Issue 1: Perspectives. Human workers often organize items us-

ing distinct organizational perspectives, rendering the answers
or clusters obtained from different workers incomparable, mak-
ing it hard to combine opinions across workers. For example,
in our experiment, 85% of the workers chose to organize by
SHAPE, 10% by COLOR, and 5% by SIZE.

• Issue 2: Granularities. Even within a single organizational
perspective, workers often organize at different “granularities”.
For instance, for workers that chose to organize based on SHAPE,
some chose to create the following clusters: {Polygons, Ellip-
ses}, while others chose to split the Polygons cluster, giving
us {Rectangles, Triangles, Ellipses}. Consequently, the
number of clusters given by the workers also varied drastically.

• Issue 3: Limited Understanding of the “Big Picture”. To limit
cognitive load, workers can only cluster or organize a small
number of items at once, making it hard for them to understand
how the small set of items fits in with the rest. For instance, if
there were no triangles in the set of 25 items given to a worker,
they would organize the items assuming that triangles did not
exist in the dataset, while that might not actually be true.

We focus on the problem of developing a cost-efficient robust work-
flow to perform consensus organization of large corpora, one that
majority of the workers agree with. In our experiment above, we
found that majority of the workers clustered on SHAPE, and that
would represent our consensus organizational perspective. Work
from behavioral psychology on free classification has similarly demon-
strated that humans have a tendency to pick a specific (likely) or-
ganizational perspective, while at the same time humans do adopt
different perspectives [12, 21, 10, 17, 19].

Prior work has considered the problem of crowd clustering [9,
30, 29], falling short in three ways: (a) These papers do not take
into account the fact that different workers may organize using dif-
ferent perspectives and at different granularities, leading to an orga-
nization that is sub-optimal with mixed organizational perspectives.
(b) Prior work emphasizes the use of random sampling; however in
the absence of any relationship between the subsets of samples that
the workers see, randomized sampling is costly. Indeed, [9] report
in their paper that they require each item to appear in 6 random
samples to ensure goodness of clustering, making it impractical in
terms of cost. (c) These papers transform the clusters provided
by workers into votes on the similarity or dissimilarity of pairs of
items, losing out on the overall clustering structure. This is because
the eventual goal of these papers is to recover pairwise similarity
or dissimilarity information, as opposed to finding a consensus or-
ganization. Due to these limitations, prior work can only organize
items appropriately if there is a single perspective with no variable
granularities (which is not true even in our stylized example above
and certainly not true in real datasets). Indeed, we find that on real
datasets, their results are much worse. We describe related work in
more detail in Section 5.

Our workflow, termed ORCHESTRA, instead uses workers to re-
peatedly organize carefully selected groups of items. Instead of de-
composing the responses from workers into pairwise comparisons,
we operate on them directly. We develop algorithms to infer not
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just which organizational perspective a worker is clustering using
but also the granularity within. We use these algorithms in con-
junction with techniques to identify the maximum likelihood gran-
ularity in the maximum likelihood perspective, assembled into a
workflow for organization.

There are several challenges in assembling ORCHESTRA. First,
ensuring adequate coverage is hard—all clusters need to be well
represented, even when individual workers may not see representa-
tives from all clusters. Second, it is not easy to identify if workers
are clustering on the same organizational perspective, especially
if they are using different granularities, or combining granulari-
ties. For instance, a worker may provide triangles, squares, non-
polygons as three clusters, while another worker may provide poly-
gons, ellipses, circles as three clusters; both these workers are us-
ing different granularities on the same perspective. Third, once we
identify that workers are indeed clustering using the same perspec-
tive, it is not trivial to combine information across workers. In our
example given previously, no two clusters provided by workers are
alike, making it challenging to combine information across them.
Fourth, combining or relating information across workers is exacer-
bated by the fact that different workers may be clustering different
sets of items; we need to identify common “pivots” that can help
us relate clusters across workers on different sets of items. Last,
assembling repeated worker clusterings into a cost-effective work-
flow, while setting the parameters that control the workflow in a
principled manner, is yet another challenge.

Here is a list of technical contributions in this paper:
• We model the problem formally using graph hierarchies to cap-

ture the notion of perspectives, and frontiers on the hierarchies
to capture the notion of granularities. (Section 2)

• We design, ORCHESTRA, a robust, low-cost workflow for orga-
nization comprising the following algorithmic components:
• We develop techniques to map worker clusterings to hier-

archies (to identify worker perspectives), and formalize the
identification of the consensus or the maximum likelihood
hierarchy as a MAX-CLIQUE problem. (Section 3.1)

• We develop probabilistic techniques to ensure that our max-
imum likelihood hierarchy has adequate coverage of the
space of all concepts in the dataset. (Section 3.2)

• We develop the notion of a kernel to relate worker cluster-
ings on different samples of items to the maximum likeli-
hood hierarchy. (Section 3.3)

• We design techniques to extend the current maximum likeli-
hood hierarchy by merging worker responses on new items
to the existing hierarchy. (Section 3.4)

• We develop algorithms that operate bottom-up to identify
the maximum likelihood frontier on the maximum likeli-
hood hierarchy, which can then be leveraged for categoriza-
tion, providing further savings on cost and improved accu-
racies. (Section 3.5)

• We further couple these algorithmic contributions with exper-
iments on three real datasets on Amazon’s Mechanical Turk
(Section 4), and demonstrate that our techniques lead to bet-
ter quality clusterings, when compared both to prior work in
this space, as well more primitive versions of ORCHESTRA.

2. PRELIMINARIES
In this section we discuss some essential concepts and ideas. In

Section 2.1, we present a sequence of definitions that helps for-
malize the problem we address in this paper. In Section 2.2, we
describe our model for worker behavior and our interfaces, and in
Section 2.3, we describe the ORCHESTRA workflow at a high level.
Finally, in Section 2.4, we provide a breakdown of the clustering

phase of ORCHESTRA that will be our focus in the next section.

2.1 Data Model
In this subsection, we provide a series of definitions related to

four ideas: clusterings, hierarchies, frontiers and complete fron-
tiers. First, we begin with a formal definition of clustering.

Definition 2.1 (Clustering). Given a set of items D, a clustering
is a partitioning of D into clusters C1, . . . , Ck such that,

(1) Ci ∩ Cj = ∅
∀ i 6= j ∈ {1, . . . , k}

(2)
⋃k

i=1 Ci = D

Every cluster in a clustering (and by consequence any set of
items) can be associated with an underlying latent concept. In-
tuitively, a concept is a description that is satisfied by each item
in a cluster. For example, in Figure 1(f), the clusters—from top
to bottom, one corresponding to each row—represent the concepts
Triangles, Quadrilaterals and Ellipses. Formally, a con-
cept describes the set of common attributes shared by all items in a
cluster. We say that the items in a cluster are instances of its latent
concept. Anything that holds true for a concept, also holds true for
the cluster that it represents.

Concepts may have subset-superset relationships among them.
Formally, we say that concept B generalizes concept A (denoted
B � A) if every item in D that is an instance of A is also an
instance of B. For example, the concept Quadrilaterals gener-
alizes Rectangles. We introduce the concept Universe, which
describes any item in the corpus D. By definition, Universe gen-
eralizes every concept associated with any subset of D.

We can organize concepts based on the generalize relationship
into a rooted concept tree. We call this concept tree a hierarchy.

Definition 2.2 (Hierarchy). For the set of items D, a hierarchy
T (D) is a rooted concept tree where

(1) A concept A ∈ T (D) is a parent of another concept B ∈
T (D) if A � B and there exists no C ∈ T (D) such that
A � C and C � B

(2) Universe is the root node of T
(3) Every instance of C ∈ T (D) is also an instance of exactly

one of its children in T
(4) For every C ∈ T (D), at least one item in D is an instance

of C.

Intuitively, a hierarchy is a concept tree in which every item of D
can be assigned to exactly one of the leaf nodes (and consequently
all of its ancestors), and no leaf node is empty. Multiple datasets
may have the same hierarchy, and a dataset may be representable
by multiple hierarchies.

Note that while a hierarchy is defined in terms of concepts, each
concept can be replaced by the cluster that it describes, to get a
hierarchy of clusters, built on the subset relation. We will treat
these hierarchies as equivalent.

Figure 1 shows some concept trees for the Shapes dataset items
shown in Figure 2. Figures 1(a) and 1(b) are hierarchies as ev-
ery item in the dataset can be assigned to one of the leaf nodes.
Other trees, shown in Figure 1(c), 1(d) and 1(e), are not hierarchies.
Figure 1(c) is not a hierarchy because the concepts Polygons and
Non-Triangles are not disjoint. Rectangles in the dataset are in-
stances of both concepts and cannot lie in exactly one of them.
In 1(d), the concept Round does not cover all instances of its par-
ent concept Non-Triangles. The dataset has a Quadrilaterals
concept in addition to Round. Figure 1(e) is also not a hierarchy as
there are no instances of Hexagons in the dataset.
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Figure 1: (a) – (e): Concept trees for the clustering example shown in Figure 2 — (a) and (b) are hierarchies; (c) is not a hierarchy since it violates (3)
in Definition 2.2 — quadrilaterals in the dataset are instances of both children of Universe; (d) is not a hierarchy since it violates (2) — quadrilaterals in
the dataset are instances of Non-Triangles but not of any children; (e) is not a hierarchy — Hexagons is a superfluous concept for this dataset. (f) Some
examples of items in our Shapes dataset, which we use as a running example in this paper

We now describe a method to find the hierarchy corresponding
to any subset of D, when T (D) is given. Let there be some set of
items S ⊆ D associated with C ∈ T (D) such that every item in S
is an instance of C. S may or may not contain every instance of C.
Consider the subtree of T (D) rooted at C. If we enforce condition
(2) and (4) in our definition of a hierarchy — replacing C by the
Universe placeholder, and dropping superfluous concept nodes in
this subtree — the resulting tree will be a hierarchy T (S). For
instance, in Figure 1(a), the subtree rooted at Polygons is a hierar-
chy if S is the set of all polygons in the dataset. If S only contains
squares and all triangles, then we would remove Rectangles as
it is now a superfluous concept, and the leftover tree would be a
hierarchy. We now define the concept of a frontier.

Definition 2.3 (Frontier). A frontier F is a set of disjoint concepts
{C1, . . . , Ck} in a hierarchy T (D) such that:

@ i, j ∈ {1, . . . , k} : Ci � Cj

In words, a frontier is a set of disjoint concepts such that no two
concepts in a frontier are connected by the generalizes relationship.
For the hierarchy shown in Figure 1(b), {Red, Green, Blue} forms
a valid frontier. Since concepts in F are disjoint, an item in D can
be an instance of atmost one concept in F .

Definition 2.4 (Complete Frontier). A frontier F in T (D) is said
to be complete if

⋃k
i=1 Ci = Universe

In other words, F , it is said to be a complete frontier if every
item in D is an instance of exactly one concept in F . For the
hierarchy of Figure 1(b), the frontier {Red, Blue, Green}, when
expanded to {Red, Blue, Green, Cyan, Pink, Yellow} becomes
complete as every item in the dataset is an instance of exactly one of
these concepts. Similarly, for Figure 1(a), {Polygons, Circles,
Ellipses}, {Quadrilaterals, Triangles, Round}, {Rectangles,
Squares, Equilateral, Scalene, Circles,
Ellipses} are all complete frontiers.

Notice the similarities in the definition of clustering and that of
a complete frontier. Just as a cluster operationalizes a concept, a
clustering can be viewed as an operationalization of a complete
frontier on a set of items. Thus, a complete frontier is associated
with a clustering of the dataset.

2.2 Interacting with Workers
We use two interfaces to interact with workers. The first inter-

face is a clustering interface. Here, workers are presented with
a carousel of items, which they can drag into as many clusters as

Figure 2: Our clustering interface. In this example, workers are asked to
organize shapes into multiple clusters. They can determine the number of
clusters by using the ‘+’ and the ‘-’ buttons seen on the right.

they like. This interface allows us to generate partial clusterings for
a small set of items. See Figure 2 for an example worker session.

We model the response to this interface, resulting in a cluster-
ing, as a frontier in some latent, underlying hierarchy. Different
workers may have completely different latent hierarchies in mind;
for instance, Figures 1(a) and 1(b) are both valid hierarchies for the
data shown in Figure 2. Thus, the worker clustering process can be
modeled as follows. First, given a subset S ∈ D, a worker picks
some latent hierarchy T (S). Then, the worker chooses a complete
frontier F in T (S). Notice that while F is complete in T (S), it
will not in general be complete in T (D). Finally, the output of the
worker is the clustering of S associated with F .

We also use a categorization interface, which is similar to the
clustering interface except that a fixed number of clusters are shown,
and each cluster is pre-populated with a fixed set of items. Workers
are asked to drag the new items into one of these existing clusters,
thereby categorizing them. In this case, workers no longer have the
freedom to select their own latent hierarchy for organization and
must instead use the clustering already provided.

2.3 Overall Workflow for ORCHESTRA
Our overall workflow comprises of two phases: the clustering

phase and the categorization phase. The clustering phase discovers
a consensus organization of the data using just a small fraction of
items from the corpus. Once the consensus set of clusters are deter-
mined, most of the items are then organized in the categorization
phase, where we place items into clusters with which they share
greatest similarity. Unlike previous work [9, 29], we don’t make
workers cluster every item in the dataset, which allows us to cut
costs significantly. Also unlike previous work, we do not randomly
sample items in each iteration. Instead, we systematically pick
some items that are already part of the hierarchy, so that new clus-
terings can be easily integrated into it. See Figures 3(a) and 3(b) for
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Figure 3: Comparison of Workflows

a graphical comparison between ORCHESTRA and prior work. In
Figure 3(a), the first three boxes refer to the clustering phase, while
the last one refers to the categorization phase.

The categorization phase is straightforward, with the only goal
being to categorize the remaining items in the dataset; categoriza-
tion will be applied to the majority of the items. The transition
from the clustering to the categorization phase will depend on the
dataset complexity. Our primary focus will be the clustering phase;
we describe how it is broken down, next.

2.4 Clustering Phase for ORCHESTRA
Given a dataset D, the goal of the clustering phase is to recover

the maximum likelihood latent hierarchy TML(D). This hierarchy
has maximum likelihood in the sense that a worker clustering the
entire dataset would pick TML(D) as the latent organizational hi-
erarchy with the highest probability.

We need to generate TML(D) across multiple samples of the
dataset. This is because in any realistic setting with large datasets,
workers will cluster a dataset S where S ⊂ D, and indeed, in gen-
eral it is likely that |S| � |D|. Given this, we must find TML(D)
by generating multiple samples and aggregating worker responses
across them.

To find TML(D), ORCHESTRA has an iterative refinement pro-
cedure that performs repeated iterations of (GENERATESAMPLE
→ CONSTRUCTHIERARCHY → MERGEHIERARCHIES → . . . ),
to generate a final hierarchy. At the end of each iteration, we gen-
erate a new estimate for TML(D). We give an intuitive explanation
for these algorithms below; a detailed description is given in the
next section.
• GENERATESAMPLE. Any sample of items that we generate

must contain some item overlap with previously generated sam-
ples, as well as contain new items that explore the dataset.
The overlap helps us locate worker frontiers on this sample
within the current estimate of TML(D), while the new items
allow us to expand TML(D) by finding new concepts. We pro-
vide a procedure to check if two workers—working on different
samples—are providing frontiers on the same latent hierarchy.

• HIERARCHYCONSTRUCTION. The construction algorithm takes
as input multiple worker frontiers collected for a single sample,
and outputs the dominant hierarchy. To separate the dominant
hierarchy, HIERARCHYCONSTRUCTION infers whether these
frontiers are chosen from the same hierarchy, or different ones.

• MERGINGHIERARCHIES. To combine hierarchies across mul-
tiple samples, the merging algorithm takes as input two hier-
archies — the current estimate of TML(D), and the hierarchy
constructed on the current sample. The output is a new esti-
mate of TML(D), and is calculated by augmenting the current
estimate of TML(D). The merging exploits the location of the
overlap items in the current estimate of TML(D).

At the end of this iterative procedure, we return the maximum like-
lihood frontier in TML(D) as the consensus clustering. The quality
of the consensus clustering depends on whether the number of iter-

ations were sufficient to ensure that most items inD can be catego-
rized into this consensus clustering. In the next section we provide
the details of the workflow for ORCHESTRA — including a sam-
pling guarantee that gives a lower bound on the size of the samples
needed to cover atleast some fraction of items in D.

3. ORCHESTRA WORKFLOW
As noted in the previous section, workers may choose different

frontiers in different latent hierarchies when asked to cluster a set
of items. The problem of finding the maximum likelihood hierar-
chy is then equivalent to finding a hierarchy that best explains the
most worker clusterings. In this section, we provide algorithms to
find this hierarchy, as well as the consensus clustering within that
hierarchy. We also give theoretical results that allow us to limit the
number of iterations in the ORCHESTRA workflow. First, in Sec-
tion 3.1, we describe the HIERARCHYCONSTRUCTION algorithm
that finds the most likely hierarchy under the assumption that all
workers cluster the same set of n items. Then, in Section 3.2, we
provide a guarantee that helps us fix a reasonable value for n. Sec-
tion 3.3 lays out the GENERATESAMPLE algorithm, and in Sec-
tion 3.4, we generalize our setting with the MERGINGHIERAR-
CHIES algorithm, allowing workers to cluster different subsets of
items, and aggregating their clusterings to get a single hierarchy.
Finally, in Section 3.5, we present a procedure to find the consen-
sus clustering from the final hierarchy that our iterative workflow
generates, as well as describing how we categorize items.

Due to space limitations, we omit all proofs and pseudocode;
they can be found in our extended technical report [13].

3.1 The HIERARCHYCONSTRUCTION Algorithm
Given a set of items S = {x1, . . . , xn} ⊆ D, we ask m workers

to cluster the items in S. We denote the set of worker clusterings
by C = {C1, . . . ,Cm}, where Ci = {Ci,1, ..., Ci,ki} is the set
of clusters proposed by worker i. Note that workers can give as
many clusters as they like, but no cluster is allowed to be empty.
Figure 4(a) shows some clusterings proposed by workers on the
sample of items shown in Figure 2.

Problem 3.1 (Hierarchy Construction). Given the clusterings C
on a set of items S, find a hierarchy T (S) such that the number of
clusterings from C that can be associated with complete frontiers
in T (S) is maximum.

Intuitively, we would like to find the maximum likelihood hierar-
chy, i.e., one that contains the maximum number of clusterings as
complete frontiers. For instance, clustering 5 in Figure 4(a) can
be associated with Figure 4(b) as a complete frontier, covering all
items in the dataset.

We will show that Problem 3.1 is equivalent to the MAX-CLIQUE
problem. MAX-CLIQUE refers to the problem of finding the max-
imum sized clique in a graph G, and is a well-known NP-HARD
problem. Consequently, the optimal solution takes exponential time
to compute. However, in our case, the graph for which MAX-
CLIQUE must be solved is small, so the computation is still feasible.
We will prove the equivalence to MAX-CLIQUE via a constructive
proof. We first provide some definitions that will help us carry out
the construction.

Definition 3.1 (Consistency of Clusterings). Clusterings Ci =
{Ci,1, . . . , Ci,ki} and Cj = {Cj,1, . . . , Cj,kj} are said to be con-
sistent if and only if for every (s, t) ∈ {1, . . . , ki} × {1, . . . , kj},
one of the following holds:



(a) Examples of real worker clusterings for the dataset in Figure 2. (b) The hierarchy T corresponding to the maximum sized clique
3, 4, 5 in (c) using CONSTRUCTHIERARCHY.

(c) The clustering graph
for the worker clusterings
shown in (a).

(d) A hypothetical hierarchy T (S) constructed in
the 2nd iteration of our workflow, which contains an
extra Hexagons concept.

(e) The hierarchy T ′ constructed by merging (b) and (d) using
MERGINGHIERARCHIES after 2 iterations.

Figure 4: An example demonstrating our iterative workflow approach on the Shapes dataset of Figure 1(f).

(1) Ci,s ∩ Cj,t = φ

(2) Ci,s ⊂ Cj,t

(3) Ci,s ⊃ Cj,t

(4) Ci,s = Cj,t

In Figure 4(a), the worker clusterings 1 & 2 are consistent — Blue
Shades decomposes perfectly into Azure Blue and Dark Blue,
as does Green Shades— while 1 is inconsistent with 3, 4, 5. Since
every clustering is associated with a frontier, we can also define a
corresponding notion of consistent frontiers: we simply replace ⊃
by � in Definition 3.1. It is useful to note that any two complete
frontiers in the same hierarchy will always be consistent. In Fig-
ure 1(a), the complete frontiers {Quadrilaterals, Triangles,
Ellipses, Circles} and {Squares, Rectangles, Triangles,
Round} are consistent.

Definition 3.2 (Clustering Graph). Clustering graphGC = (C, E)
is an undirected graph, where each clustering in C corresponds
to a unique vertex in G and there is an edge between Ci and Cj

∀ i, j ∈ {1, . . . ,m} if and only if Ci and Cj are consistent.

Figure 4(b) depicts the clustering graph for the clusterings shown
in Figure 4(a). Each worker clustering corresponds to a node in the
graph. Notice how there is no edge from 1 to any of 3, 4, 5, since
they are mutually inconsistent.

Let CCLIQUE ⊆ C be a clique in GC. Let the set of all unique
clusters in CCLIQUE beH = {Ci,j | Ci,j ∈ Ci, ∀Ci ∈ CCLIQUE}.
H can be organized into a hierarchy TH as follows: for every clus-
ter Ci,j ∈ H, find the smallest cluster inH ∪ Universe that is a
superset of Ci,j and mark that as the parent of Ci,j in TH.

Consider the clique 3, 4, 5 in the clustering graph of Figure 4(b).
H contains a total of 14 clusters as shown in Figure 4(a). Suppose
we wanted to find the parent of Rectangles; the smallest cluster
in H ∪ Universe containing Rectangles is Quadrilaterals.
The cluster Universe also contains Rectangles but it is not the
smallest such cluster. Thus, we make Quadrilaterals the parent
of Rectangles, as shown in Figure 4(c). Similarly, Universe
becomes the parent of Quadrilaterals. The hierarchy after this
construction is shown in Figure 4(c).

We state the following lemma and theorem which show that our
construction is valid, and omit the proof. As mentioned earlier, all
proofs can be found in our extended technical report [13].

Lemma 3.1. For any Ci,j ∈ H, the smallest cluster in H ∪
Universe that is a superset of Ci,j , is unique.

Theorem 3.1. TH is a hierarchy.

Suppose we pick CCLIQUE to be the maximum sized clique in
GC, and let Tmax be the hierarchy that is generated using this clique.
We now state an important result.

Theorem 3.2. Suppose every clustering C ∈ C lies in exactly one
maximal clique. Also suppose the total number of latent hierarchies
is k. Then, Tmax is the maximum-likelihood hierarchy with proba-
bility atleast

[
1−

(
1− 1

k

)m], where m is the number of workers.

Figure 4(c) shows the maximum likelihood hierarchy correspond-
ing to the maximal clique 3, 4, 5 in the clustering graph of Fig-
ure 4(b). Notice that this hierarchy corresponds to organizing the
dataset on SHAPE.

Identifying the most probable hierarchy is thus equivalent to find-
ing the maximum sized clique in GC. The size of GC is atmost
the number of workers m, since we can combine identical worker
clusterings into a single node. Since m is typically small (≤ 15),
solving MAX-CLIQUE is quite tractable.

We note that we do not provide an explicit mechanism for worker
mistakes. In our experiments, we find that workers made no errors
with respect to the organization they had in mind. Even if some
workers do make errors, our maximum likelihood hierarchy only
contains those workers who clustered items consistently, and so
either these errors would not be incorporated, or a large number of
workers would have to make these errors in the same way, which is
unlikely. In the future, we plan to relax our definition of consistency
of clusterings, to admit a small tolerance threshold.

3.2 Sampling Guarantee
As discussed in Section 2, our approach is to first construct a

maximum likelihood hierarchy using several samples and then cat-
egorize the remaining items into the maximum likelihood frontier
in this hierarchy. Recall that for S ⊆ D, complete frontiers in a
hierarchy T (S) are not generally complete in T (D). This is be-
cause some concepts may have instances in D, but not in S. For
instance, suppose D contains instances of Ellipses and Circles
while S only contains items from Ellipses, but no instance of
Circles. Then, T (S) would not contain the Circles concept.
Circles would therefore go undiscovered in our sample. We now
prove a guarantee that allows us to make a suitable choice for the
parameter n; |S| = n.

Intuitively, if the size of S is large, we can be confident that
the sample will discover the concepts that occur frequently in the
dataset, i.e., the concepts that have many instances in the dataset.
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On the contrary, when S is small, a large number of concepts are
likely to go undiscovered. Thus the hierarchy constructed on a
small sample may not be representative of the entire dataset. We
formalize the notion of representativeness below.

Definition 3.3 (Concept Coverage). The coverage of a concept C
is the fraction of items in D that are instances of C.

We say that a sample S discovers C if and only if there is an item
s ∈ S that is an instance of C.

Definition 3.4 (Frontier Coverage). The coverage of a frontier F
with respect to a sample S is the sum of coverages of the concepts
in F that S discovers.

Suppose that S contains n randomly sampled items. Let T (D)
be a hierarchy constructed on D and let F be a complete frontier
in T (D) containing f concepts. We give a lower bound on the
expected coverage of F with respect to S, ES [XF ] below.

Theorem 3.3. ES [XF ] ≥ 1− f
n+1

(1− 1
n+1

)n

In Figure 5(a), we plot n vs. f for different values of a threshold δ,
which lower bounds the expected coverage. Observe that for fixed
values of δ, n increases linearly with f . However, this lower bound
is not tight and the actual coverage turns out to be greater than δ.
To observe this, we plot δ vs. the actual coverages that we get in
Figure 5(b). For each value of δ, we pick 20 (f, n) pairs that satisfy
the bound and conduct 1000 random trials for each pair. Each trial
consists of assigning a random probability distribution to f bins,
which gives the probability of an item in the dataset belonging to a
bin (concept). We then draw n samples from this distribution, and
compute the actual coverage that we get.

We can similarly find an upper bound for the variance of XF .

Theorem 3.4. VarS [XF ] ≤ 1−
(
1− f

n+1

(
1− 1

n+1

)n)2
As a rule of thumb, we pick δ = 0.95 and f = 16 for the experi-
ments that we carry out, which results in n = 115. For n = 115
and f = 16, the variance is upper bounded by 0.1. However, we
note that we cannot expect a single worker to be able to organize
115 items at once, so we describe how to iteratively cluster smaller
sets of items while being able to combine the information across
these iterations in the next section.

3.3 The GENERATESAMPLE Algorithm
As we noted earlier, it is not possible for a single worker to gen-

erate a clustering for large S, especially one as large as ≈ 120.
Instead, our approach will be to repeatedly instantiate smaller S
for every iteration, while bounding its size. For example, one ap-
proach would be to instantiate four distinct sets S of size 30 each,
each of which is organized by workers. However, due to the lack of
overlap across these sets, it is impossible to relate the hierarchies

constructed across these sets to one another. Intuitively, for each
new iteration, it is desirable that S contains some item overlap with
the current estimate of the maximum likelihood hierarchy (at the
end of the previous iteration), so that the new hierarchy we gener-
ate can be easily merged into the current estimate of the maximum
likelihood hierarchy. We now provide a mechanism to fix the size
of this overlapping set, which we call the kernel of S. Each sample
S consists of some new items, not encountered before, along with
items that have already been organized in the current maximum
likelihood hierarchy, which constitute K, the kernel of S.

To set a reasonable value for the kernel K, we need it to be large
enough to allow us to perform hierarchy merging at each iteration.
It also needs to be small enough to allow introduction of some new
items into our sample. Our strategy for picking the kernel items is
to pick a single item from each of the leaf nodes in the current hier-
archy estimate. Therefore, we set |K| = # of leaves and randomly
sample the rest of the items in S from D.

The justification for this strategy is that sampling a single item
from every leaf allows us to determine any concept a worker gen-
erates — whether an internal node in the hierarchy, or a leaf in our
current maximum likelihood hierarchy. If a worker combines some
kernel items into a single cluster, we can infer the concept of the
entire cluster (which includes some new items) by finding where
these kernel items occur together in our hierarchy. We will make
this idea more precise in the MERGINGHIERARCHIES algorithm.

In our experiments, we have never encountered a case where |K|
is too large: nevertheless, in such cases, we can simply split |K|
up into equal sized smaller portions, and repeat the clustering of
the same set of new items with these smaller portions of the kernel,
such that each of the new items gets the opportunity to be associated
with or clustered with any of the kernel items.

3.4 The MERGINGHIERARCHIES Algorithm
In this subsection, we describe our MERGINGHIERARCHIES al-

gorithm, in which we make use of the kernel formulation that we
introduced above.

Let T be our current estimate of the maximum likelihood hierar-
chy generated after the τ th iteration. Suppose that we run HIERAR-
CHYCONSTRUCTION on the sample S generated for the (τ + 1)th

iteration, and get a hierarchy T (S). Using K, the kernel of S, we
would like to merge T (S) into T to generate a new hierarchy T ′,
by mapping known concepts across these hierarchies. To carry out
this merging, we will assume that the kernel items in a cluster repre-
sent that cluster’s concept accurately, as well as any super-concepts
(i.e., concepts that are ancestors of the cluster’s concept).

Consider the set of leaf nodes C1, . . . , Cl in T (S) and let the set
of kernel items in Ci be Ki. For each leaf Ci:
• Suppose |Ki| > 0 for Ci; we map Ci to the node C in T that
contains the smallest superset of Ki. This is simply the lowest
common ancestor of the leaf nodes in T that contain kernel items
from Ki. Intuitively, if the kernel items are identical then both
clusters are associated with the same concept, and can therefore be
merged. All items in Ci are transferred to C.
• Suppose |Ki| = 0 for Ci; we first find the ancestor Ca (with
kernel Ka) closest to Ci (the lowest ancestor) in T (S) such that
|Ka| > 0. Since Ci contained no kernel items, it is clear that Ci

represents some new concept; we must search for another concept
that generalizes Ci. As before, we map Ca to the node C in T that
contains the smallest superset of Ka. However, since we need to
map Ci and not Ca, we instead insert Ci as a new child of C in T .

After mapping all leaf nodes in T (S) to T , we get a new maxi-
mum likelihood hierarchy T ′ after the (τ+1)th iteration. It is easy
to see that T ′ is indeed a hierarchy. The only changes we make are



(a) adding in new items to the concept of which they are instances,
which does not modify the hierarchy and (b) adding in new concept
nodes. For (b), notice that by construction, we attach the new con-
cept Ci to the lowest concept C that generalizes it. Ci is disjoint
with respect to all other children of C, otherwise it would contain
a kernel item. Ci is also necessary to allow all items to exist at the
leaf nodes, since no other child of C covers the concept discovered
in Ci. Therefore, T ′ is a hierarchy.

Figure 4 demonstrates an example of MERGINGHIERARCHIES.
Figure 4(b) is our current estimate T to be merged with Figure 4(d),
depicting T (S). The merged hierarchy T ′ is shown in Figure 4(e).
By our GENERATESAMPLE algorithm, the kernel of S would con-
tain 6 items, one each for the leaves of T in Figure 4(b). Even
though T (S) combines the kernel items corresponding to Squares
and Rectangles into the Quadrilaterals cluster in Figure 4(e),
we can map Quadrilaterals in T (S) using these 2 kernel items,
to the Quadrilaterals cluster in T , the lowest node where they
occur together. For the Hexagons cluster in T (S), we first find its
deepest ancestor in T (S) that contains a kernel item, which turns
out to be Universe. Universe in T (S) is mapped to Universe
in T , and Hexagons is inserted as a child, as shown in Figure 4(e).

We now conclude this section with a discussion of the cost of our
iterative workflow.
Cost of Iterative Workflow. Our sampling guarantee requires us
to sample n items, while the kernel overlap is fixed to be the # of
leaves in the current hierarchy estimate. Notice that when fixing
the value of n, we assumed that the size of a complete frontier
in the dataset hierarchy is f . We do not expect our choice of n
to discover any more than an f -sized complete frontier. We can
therefore upper-bound the value of |K|, the size of the kernel, to be
f , since we would not expect the number of leaves in our maximum
likelihood hierarchy to exceed f . Assume that in each iteration, we
ask for clusterings on h items. To find the total number of iterations
τ , we find the smallest value that satisfies h + (h − f)(τ − 1) ≥
n, where we have replaced |K| with its upper bound f in each
iteration. We typically set h = 35. For f = 16 and n = 115, τ
turns out to be 6. If each iteration is clustered by m workers, the
total cost of our iterative workflow becomes O

(
m
⌈

(n−f)
(h−f)

⌉)
. The

cost of our workflow is independent of the size of the dataset D.

3.5 Categorization
At the end of our iterative workflow, we have a final maximum

likelihood hierarchy T , from which we must extract the consensus
clustering granularity or frontier. As we stated in Section 2, the
reason we construct this hierarchy is to preserve information about
the granularities at which workers cluster items. We can now sim-
ply determine the consensus clustering i.e. the granularity work-
ers are most likely to cluster on. This consensus clustering is the
maximum-likelihood complete frontier in T . We now outline a
procedure to find this frontier. Subsequently we describe how we
use this frontier for categorization.
Maximum-Likelihood Frontier. Suppose that T consists of the
set of nodes V with root node R. Associate with each node v, an
event Ev that v is split by a worker i.e., a worker chooses to give
us nodes/concepts below v in their frontier. Let F be a frontier in
T and let A be the set of ancestors of F , excluding R. We define
the likelihood of F as,

L(F ) = p(ER)
∏
v∈F

p(Ev|Ev(1), . . . , ER)∏
v′∈A

p(Ev′ |Ev′(1), . . . , ER)

where v(1), . . . , R are the ancestors of v. v(1) is the parent of v,
v(2) is the parent of v(1), etc. Observe that p(Ev|Ev(1), . . . ,Ev(k)) =
p(Ev|Ev(1)) i.e., Ev is conditionally independent of the rest of its
ancestors, given its immediate parent. We have,

L(F ) = p(ER)
∏
v∈F

p(Ev|Ev(1))
∏
v∈A

p(Ev|Ev(1))

Given a set of worker responses (complete frontiers), we approxi-
mate p(Ev|Ev(1)) as the ratio of the number of workers who gave
node v as a frontier to the total number of workers who gave node
v or its descendants as frontiers. Note that p(ER) = 1. We are
interested in argmax

F
L(F ) which can be computed using the re-

currence relation below.

D(v) = max

p(Ev|Ev(1)), p(Ev|Ev(1))
∏

u∈C(v)

D(u)


where C(v) is the set of children of v. Intuitively, at node v, there
are two choices: either keep node v as the frontier, or drill down
and check for more likely frontiers, and using this, we can find the
maximum likelihood frontier.
Categorization on Frontier. To carry out categorization we present
workers with an interface similar to the clustering interface of Fig-
ure 2 with certain key differences. For each cluster in our consensus
maximum likelihood clustering, we give a few ‘pivot’ items to the
worker as exemplars for that cluster. Our assumption is that these
pivots completely capture the concept represented by that cluster.
Workers are asked to categorize items into the cluster which seems
most appropriate. Once again, we do not point workers to any at-
tributes in the data, instead relying on our pivots to allow them to
infer the organization of our consensus clustering.

The cost of our categorization step is easily calculated — there
are |D|−n items left after the clustering phase, and suppose we take
θ votes per item. Typically n � |D|, so the total categorization
cost is then O(θ|D|), linear in the size of the dataset.

4. EXPERIMENTS
In our experiments, our goal is to qualitatively and quantita-

tively compare ORCHESTRA to other crowd-powered clustering al-
gorithms.
Datasets. We used the following datasets in our experiments.
• Our first dataset, titled shapes, is a synthetic, stylized dataset

consisting of shapes, our running example in Section 2. As
described, each item is a random (SHAPE, SIZE, COLOR) tu-
ple. The images from this dataset are also the ones displayed
in Figure 2. We use this dataset because we can control the or-
ganizational hierarchies in this dataset, allowing us to evaluate
the performance of algorithms on recovering clusterings across
one or more hierarchies in the dataset.

• The second dataset, titled scenes, contains images from 13 cat-
egories [8] in natural and man-made surroundings. This dataset
was also used in prior work on crowd clustering [9, 29].

• The third dataset, titled imagenet, contains images from Im-
ageNet[6]. Images are sampled randomly from 20 categories:
{buildings, cars, parrots, vulture, fruit, flower, vegetable, fighter,
commercial, helicopter, ship, seahorse, whale, cheetah, lion,
elephant, tiger, jellyfish, sparrow, leaves}.

Across all datasets, we conduct multiple runs of different algo-
rithms on random subsets of the datasets.
Algorithms. We compare the following state-of-the-art crowd-
powered clustering algorithms with ORCHESTRA:



• CrowdClust: This is the algorithm from Gomes et al. [9].
• MatComp: This is the algorithm from Yi et al. [29].

Code for both these algorithms was provided by the authors; we
faithfully set the parameters as described in the papers. Both these
algorithms require workers to cluster random samples of items re-
peatedly (recall Figure 3(b)), while ensuring that each item is as-
signed the same number of times across various samples.

Note that since these algorithms do not use categorization, we
only compare the clustering phase of ORCHESTRA with these al-
gorithms, enabling us to compare them on an equal footing. In
all executions of these algorithms, we ensured that the algorithms
had the exact same cost as ORCHESTRA, i.e., the same number of
clustering tasks assigned to workers. We note that employing cat-
egorization would only lead to further reduction in cost—we study
the benefits of categorization later on in this section.
Evaluated Aspects. We evaluate the following aspects of OR-
CHESTRA:
• How do the eventual clusterings provided by ORCHESTRA com-

pare with the clusterings provided by other algorithms both
qualitatively and quantitatively, on real-world datasets?

• How do the eventual clusterings provided by ORCHESTRA com-
pare with the clusterings provided by other algorithms both
qualitatively and quantitatively, on datasets where we can con-
trol the organizational hierarchies?

• What is the impact, on cost and accuracy, of the categorization
interface relative to the clustering interface?

• What is the benefit of intelligently chosen samples over ran-
domly chosen ones for ORCHESTRA?

• How does the quality of clustering vary with the number of
workers providing clusters?

Metrics. To quantitatively compare ORCHESTRA with prior work,
we adopt two metrics that are also used in prior work: (a) Variation
of Information (VI) [18] is an information theoretic, true distance
metric used for comparing clusterings. A VI of 0 indicates a perfect
match. (b) Normalized Mutual Information (NMI) [4] is a metric
on [0, 1]— a perfect match gets a score of 1. In addition, for our
stylized dataset, we introduce a new metric: (c) Clustering Hierar-
chies, the number of hierarchies that explain the resulting cluster-
ing returned by the algorithms. This is calculated as the minimum
number of organizational hierarchies used in assigning all items to
its cluster.

How do the eventual clusterings provided by ORCHESTRA
compare with the clusterings provided by other algorithms on
real-world datasets?
We compare the results of ORCHESTRA versus the other two

algorithms on the scenes and imagenet datasets. We perform mul-
tiple runs for each dataset (5 for scenes and 2 for imagenet); each
run is on a subset of n = 115 items (setting n as described in
Section 3.2) — to enable easy comparison only on clustering as
opposed to clustering plus categorization. Each algorithm uses 5
samples across these n items: MatComp and CrowdClust use ran-
dom samples across n, while ORCHESTRA uses samples chosen by
GENERATESAMPLE.

We report the quantitative results in Table 1, where VI and NMI
are computed for each algorithm relative to the ground truth for the
respective datasets. We find that ORCHESTRA outperforms both
MatComp and CrowdClust on both NMI and VI (recall that smaller
is better for VI and worse for NMI). For instance, ORCHESTRA has
an average VI of 1.241 across the five runs on the scenes dataset,
which is much lower than the 1.408 of CrowdClust and 1.635 of
MatComp — a 12% and 25% decrease respectively; only on the
fifth run does CrowdClust have a better VI, and there too the dif-

(a) ORCHESTRA (b) CrowdClust (c) MatComp

Figure 6: Qualitative Comparison of Clusters provided by different algo-
rithms on the ImageNet dataset

ference is < 0.02. For NMI, ORCHESTRA consistently performs
better than CrowdClust and MatComp in all runs. On the imagenet
dataset, which is a much more challenging dataset, the difference is
even larger, with ORCHESTRA improving over MatComp by more
than 50% on VI, and CrowdClust by 11%.

Next, we qualitatively examine the resulting clusters for the first
run of the imagenet dataset via Figure 6. We depict a confusion ma-
trix corresponding to each clustering algorithm, where each ground
truth category corresponds to a row, while each cluster in the result
corresponds to a column. It is therefore desirable that, in each row,
there is a single column where there is non-zero presence (i.e., the
color is not blue) — indicating that the entire ground-truth cate-
gory appears as a whole in some cluster as opposed to being split.
On examining Figure 6, it is clear that CrowdClust and MatComp
have much worse matrices than ORCHESTRA. For instance, the
only three rows in ORCHESTRA that have non-zero presence in
more than one column are fruit, vegetable, seahorse (17/20 rows are
good). On the other hand, for MatComp, all rows apart from chee-
tah, flower, helicopter, and ships have non-zero presence in more
than one column — 4/20 rows are good, and for CrowdClust, 3/20
rows are good. For example, the commercial category, referring to
commercial airlines, appears in clusters 0, 1, 2, 4, 5, 7 — seven
clusters in CrowdClust, and in all clusters in MatComp! Thus,
there is a clear benefit to ORCHESTRA in identifying and decom-
posing worker responses across different hierarchies and granular-
ities, as opposed to operating on all of them at once. Furthermore,
the clusters provided by ORCHESTRA have clearly associable con-
cepts — cluster 4 consists of land animals; cluster 5, of aircraft,
while there are no discernible concepts corresponding to the clus-
tering of MatComp and CrowdClust. Similar results hold for the
other runs on both datasets, indicating why ORCHESTRA does bet-
ter than MatComp and CrowdClust on VI and NMI. We report on
these results in our extended technical report [13].

How do the eventual clusterings provided by ORCHESTRA
compare with the clusterings provided by other algorithms on
a stylized dataset?

For this experiment, we take 20 different worker responses for the
shapes dataset: recall that the shapes dataset is small enough to be
grouped into one single clustering task. Thus, our ORCHESTRA is
restricted to the HIERARCHYCONSTRUCTION step, and all algo-
rithms are run on the same data, by repeatedly taking subsets of
worker responses.

For each run, we compute the number of hierarchies (out of
{SHAPE, SIZE, COLOR}) that appear in the consensus clustering.
Figure 7(e) shows the average number of organizing hierarchies
vs. the number of worker responses (r), repeated over 100 random
runs. While ORCHESTRA is always able to identify one dominant
organizing hierarchy, the other algorithms tend to mix hierarchies
frequently, with the average number for MatComp being larger than
CrowdClust. (We were unable to run MatComp for r < 12—the



VI NMI
Dataset Run # ORCHESTRA CrowdClust MatComp ORCHESTRA CrowdClust MatComp

Scenes

1 1.493 1.949 1.493 0.578 0.544 0.578
2 1.232 1.386 1.381 0.710 0.691 0.608
3 1.171 1.217 1.423 0.700 0.700 0.600
4 1.267 1.461 2.041 0.689 0.603 0.360
5 1.040 1.027 1.837 0.769 0.761 0.418
avg 1.2406 1.408 1.635 0.689 0.660 0.513

ImageNet avg 1.021 1.146 2.265 0.792 0.771 0.420
Table 1: Quantitative Comparison of ORCHESTRA, CrowdClust, MatComp on VI and NMI: For Scenes dataset, 5 runs were performed for each algorithm.
The best results in each experiment are in bold.
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Figure 7: (a – d) Qualitative Comparison of Clusters provided by OR-
CHESTRA on the Scenes dataset (e) Clustering Hierarchy comparison

spectral clustering found no principal eigencomponents due to the
matrix being low-rank.) This is despite the fact that 85% of workers
are actually organizing by SHAPE — so most samplings of worker
responses get this dominant organization.

We would also like to test all algorithms in situations when there
are multiple hierarchies i.e., workers are equally likely to use any
one of these organizations. We pick a subset of 5 responses from
the 20 that we received, where 2 workers organize by SHAPE, 2 by
COLOR and 1 by SIZE. On this data, CrowdClust mixes the SHAPE
and SIZE organizing principles: the clustering they get is Small
Shapes, Big Triangles, Big Rectangles. Similarly, MatComp
is unable to come up with a consensus clustering that relies on a
single hierarchy of organization. In contrast, ORCHESTRA is able
to identify a consensus clustering based on SHAPE.

What is the impact, on cost and accuracy, of the categoriza-
tion interface relative to the clustering interface?
Earlier, we noted that the cost (per item) of the categorization

phase is lower than that that in the clustering phase. In this sec-
tion, we evaluate the quality of clusterings obtained following the
categorization phase and the cost associated with it. For this exper-
iment, we asked workers to categorize 175 items from the scenes
dataset, organized into 5 tasks with 35 items each. We used 10 im-
ages from each consensus cluster found by ORCHESTRA after one
run on the scenes dataset, shown in Figure 7(a) as pivots for catego-
rization. We asked five independent workers to answer each task;
items were assigned to the cluster with the most votes.

Figures 7(a) and 7(c) show the quality of clustering before and
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Figure 8: (a) VI and (b) NMI with varying number of worker responses

after categorization. Essentially, the categorization stage preserves
the quality of the clustering stage, i.e., no new “bad” rows—corres-
ponding to errors—are introduced. The highway category was
split across two clusters at the end of the clustering stage. The
pivots actually help the workers in placing most of the highway im-
ages in the outdoor-city/town cluster, as opposed to the outdoor--
natural cluster.

The workers were paid 10 cents per task, as opposed to 20 cents
per task for clustering. Combined with the fact that only 5 worker
responses were sought (as opposed to 15 for clustering), this stage
has a per-item cost that is at least 1/6-th the cost in clustering stage.
Further, categorization does not require different tasks to share a
common kernel of items — each item needs to appear in only one
task. This significant cost saving, while retaining the quality of
the clustering stage, demonstrates that categorization is a cheap,
unambiguous way of clustering items, once the clusters have been
discovered with reasonable confidence.

What is the benefit of intelligent sampling (GENERATESAM-
PLE) compared to random sampling?
To evaluate the impact of our GENERATESAMPLE procedure,

we run our HIERARCHYCONSTRUCTION and MERGINGHIERAR-
CHIES algorithms on randomly sampled samples for the scenes
dataset. One such result is shown in Figure 7(b). While this is
similar to the clustering with GENERATESAMPLE, note that clus-
ters 1 and 4 have nearly the same set of items — indoor. This
happens because the corresponding samples have no items from
indoor that are common, and hence it is not possible to determine
that these sets of items should be grouped together, resulting in a
near-duplicate cluster. This is undesirable behavior, motivating the
need for a kernel of items.

How does the quality of clustering vary with the number of
workers who perform clustering?
To evaluate this, we plot the average VI and NMI for all runs of

scenes dataset in Figures 8(a) and 8(b). Different samples of re-
sponses are taken 50 times, and the results are averaged over these
50 trials. The performance of ORCHESTRA degrades gracefully
as the number of worker responses is decreased. Note that even
with 6 responses, our performance (in terms of VI) is better than
CrowdClust with 15 responses (refer to Table 1). Further, OR-
CHESTRA is able to outperform MatComp on both VI and NMI with
just 2 worker responses. We report on these results further in [13].

The above results demonstrate that while more worker responses
help in getting better clusterings, ORCHESTRA is still able to out-
perform existing algorithms with fewer number of responses.



5. RELATED WORK
Our work is related to prior work on crowd clustering, taxonomy

generation, as well as other work on crowdsourced algorithms.
Crowd-Based Clustering. Our work is most closely related to the
prior work on crowd-powered clustering via a matrix completion
approach, including [9, 30, 29]. In all these papers, worker cluster-
ings are performed on randomly selected sets of items. Then, the
results of worker clusterings are interpreted as pairwise compar-
isons: for example, if a worker placed items a, b, c in one cluster,
then this is interpreted as three pairwise comparisons, between a
and b, b and c, and c and a. Subsequently, matrix completion tech-
niques are applied to infer the missing entries in the matrix. We
identify multiple ways this line of work fails to take into account
the complexity of crowd-powered organization: (a) Mixing of hi-
erarchies and frontiers: since these papers do not interpret differ-
ent worker responses as being derived from different hierarchies
or frontiers within a hierarchy, they tend to provide clusterings
that mix hierarchies and mix frontiers within a hierarchy, leading
to poor organization. ORCHESTRA, on the other hand, carefully
treats distinct hierarchies as well as frontiers within a hierarchy.
(b) Random samples of items: unlike ORCHESTRA, which uses in-
telligently chosen samples of items, these papers use random sam-
ples of items. (c) Loss of information: since these papers inter-
pret worker clusterings as pairwise information within the matrix,
they lose valuable information, as opposed to ORCHESTRA, which
operates on clusters as a whole. (d) No categorization: since the
ORCHESTRA approach identifies the consensus hierarchy, this hi-
erarchy can be leveraged to subsequently categorize the remaining
items, providing further cost savings. None of these papers perform
categorization to further save costs.

There has been other work on variants of clustering: Heikin-
heimo and Ukkonen [11] describe the CROWD-MEDIAN algorithm
whose goal is to compute centroids, as opposed to identifying clus-
terings. For example, as soon as they locate some representative
object, they can stop, instead of having to organize all the objects,
like in our case. Further, they do not explicitly capture differ-
ent perspectives of workers, limiting the applicability in practice.
Davidson et al [5] provide theoretical guarantees for aggregation
(GROUP BY) queries, where workers are asked to answer ques-
tions of the form "are a and b of the same type". This paper makes
a simplifying assumption that there is a correct answer (i.e., there
is a ground truth collection of types), with workers answering in-
correctly with a fixed error probability. ORCHESTRA uses a more
general question type (i.e., cluster a collection of objects) since it
provides more context, and also does not make the same assump-
tions about worker answer correctness. [31] propose a collabo-
rative clustering scheme where they discover user preferences for
clustering as opposed to identifying a consensus clustering of the
data, as we do.
Crowd-Based Hierarchy Building. A variety of papers use the
crowd for hierarchy construction: Chilton et al. and Bragg et al. [3,
2] use text labels and filtering on the labels to create a hierarchy
while Sun et al. and Karampinas et al. [22, 14] ask the crowd for
pairwise ancestor descendant relationships, also demonstrating that
identifying the optimal set of ancestor descendant questions is NP-
HARD. While hierarchy construction could, in principle, be used as
a precursor to clustering or organization, none of these papers take
into account different organizational principles (i.e., the existence
of many hierarchies); it remains to be seen if hierarchy construction
can be improved by taking into account our techniques for identi-
fying organizational principles. At the same time, it would be in-
teresting to extend our algorithms to generate a complete hierarchy

on the set of clustered items.
Other Crowdsourcing or Active Learning Work. Past work on
active learning has utilized human workers to provide constraints
for automated clustering algorithms. This work relies on human
competence in making judgments for ambiguous image pairs, rather
than using humans expertise in organizing data into clusters. Biswas
et al. [1] obtain hard pairwise constraints in a crowdsourced set-
ting by asking targeted questions related to an item pair. Lad et
al. [15] ask humans to provide attribute-based explanations, rather
than pairwise constraints, and opt to use these as soft constraints.
Neither work allows humans to explicitly cluster data.

Other work focuses on learning a embedding of the data using
crowd workers, and then clustering in this latent space using a stan-
dard clustering algorithm. The disadvantage of this approach is that
it mashes together worker responses, and loses rich information
that can be extracted from workers. Wilber et al. [28] create con-
cept embeddings by combining human experts with automation.
Tamuz et al. [23] learn a ‘crowd kernel’, which embeds items into
a Euclidean space. Neither work explores how to cluster this em-
bedding effectively, to extract different organizational hierarchies.

Prior work on categorization does not attempt to discover orga-
nizational principles, instead presenting a predefined organization
to workers, and asking them to assign items into categories. Both
papers in this space [20, 7] use graph-based approaches to carry
out categorization into a taxonomy of concepts. Our work can be
considered a precursor to the algorithms described in these papers,
which can be integrated into our categorization step.

Work on entity resolution (ER) can be regarded as clustering
with a different objective: find clusters of homogenous (identical)
items, in contrast to our setting, where the organizing principle is
not clear. [16, 27, 26, 24, 25] are all examples of work that rely on
human judgments to carry out ER, all using pairwise comparisons.

6. CONCLUSIONS AND FUTURE WORK
We described ORCHESTRA, our approach to perform consen-

sus organization of corpora using the crowd. We developed tech-
niques for identifying maximum likelihood frontiers, for issuing
additional questions from the crowd, ensuring that the eventual
frontiers have high coverage, and combining information across
different crowd answers. We demonstrated the benefits of OR-
CHESTRA versus other crowd-clustering schemes on three datasets
with different characteristics. The organizations returned by OR-
CHESTRA are higher quality (up to 24% improvement on VI) and
are more cost effective (up to a reduction of 6×) than other schemes.

We believe our paper raises a number of interesting unanswered
questions: (a) Would it help to ask workers to describe, in words,
the clustering that they are using, and combine that information
with the hierarchy construction or merging algorithm? Once we
identify the maximum likelihood hierarchy, could we ask workers
to cluster on that hierarchy (in words)? (b) Would it help at all to
drill-down on certain nodes in a given hierarchy by asking workers
to only organize objects that are known to be part of the concept
corresponding to that node? One drawback of this is that we may
end up mixing hierarchies: if we apply drill-down to a node con-
taining triangles, we may end up introducing size or color as the
organizational principle at that point. (c) We observed that often
the hierarchies that we obtain (corresponding to the cliques) may
in fact share many clusterings: in such cases, we still just end up
picking the largest clique. Would it be possible to merge these hier-
archies together, despite not being part of a single clique, by using a
more tolerant merging criteria—would that lead to any benefits? (d)
Can we combine our algorithm with an automated scheme that pro-



vides prior assessments of similarity using automatically extracted
features? We plan to address these, and other questions in follow-
up work.
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